
2 Metric geometry

At this level there are two fundamental approaches to the type of geometry we are studying.
The first, called the synthetic approach, involves deciding what are the important properties of the
concepts you wish to study and then defining these concepts axiomatically by their properties. This
approach was used by Euclid in his Elements (around 300 B.C.E.) and was made complete and
precise by the German mathematician David Hilbert (1862-1943) in his book Grundlagen der
Geometrie [1899; 8th Edition 1956; Second English Edition 1921].

The second approach, called the metric approach, is due to the American mathematician,
George David Birkhoff (1884-1944) in his paper ”A Set of Postulates for Plane Geometry Based on
Scale and Protractor” [1932]. In this approach, the concept of distance (or a metric) and angle
measurement is added to that of an incidence geometry to obtain basic ideas of betweenness, line
segments, congruence, etc. Such an approach brings some analytic tools (for example, continuity)
into the subject and allows us to use fewer axioms.

A third approach, championed by Felix Klein (1849-1925), has a very different flavour that of
abstract algebra–and is more advanced because it uses group theory. Klein felt that geometry
should be studied from the viewpoint of a group acting on a set. Concepts that are invariant under
this action are the interesting geometric ideas. See Millman [1977] and Martin [1982].

(2.1) Definition (distance function)
A distance function on a set S is a function d : S ×S → R such that for all P ,Q ∈ S
(i) d(P ,Q) ≥ 0; (ii) d(P ,Q) = 0 if and only if P =Q; and (iii) d(P ,Q) = d(Q,P ).

1. Let M denote non-empty set and let
dM :M×M→ {0,1} denote function on M×M
defined on the following way: ∀P ,Q ∈M

dM(P ,Q) =
{

1, if P ,Q
0, if P =Q

Check is it dM a distance function.

2. Let P (x1, y1) and Q(x2, y2) denote two
points in R2, and let dmax : R2 ×R2→ R denote

a function which is defined on the following way
dmax(P ,Q) = max{|x1 − x2|, |y1 − y2|}. Check is it
dmax a distance function.

3. Let P (x1, y1) and Q(x2, y2) denote two
points in R2, and let d : R2 ×R2→ R denote a
function which is defined on the following way
d(P ,Q) =

√
(x1 − x2)2 +4(y1 − y2)2. Check is it d

a distance function.

(2.2) Definition (taxicab distance)
Let P (x1, y1) and Q(x2, y2) denote two points in R2. The taxicab distance

between P and Q is given by

dT (P ,Q) = |x1 − x2|+ |y1 − y2|.

4. Show that the taxicab distance is a distance
function on R2.

5. If d0 and d1 are distance functions on S ,
prove that if s ≥ 0 and t > 0, then sd0 + td1 is
also a distance function on S .

6. Let d denote distance function on S , and

define function d′ : S ×S → R on the following
way: ∀P ,Q ∈ S

d′(P ,Q) =
d(P ,Q)

1 + d(P ,Q)
.

Show that d′ is also distance function on S .
Notice that 0 ≤ d′(P ,Q) < 1 ∀P ,Q ∈ S .

(2.3) Definition (surjective function)
A function f from A to B is called onto, or surjective, if and only if for every element b ∈ B there

is an element a ∈ A with f (a) = b. A function f is called a surjection if it is onto.
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Remark: A function f is onto if ∀y ∃x (f (x) = y), where the universe of discourse for x is the
domain of the function and the universe of discourse for y is the codomain of the function.

7. Let C = {R2,LE} denote Cartesian plane, and let Lm,n denote non-vertical line. Lets define

function f : Lm,b→ R on the following way; f (P ) = f ((x,y)) = x
√
1+m2; where P ∈ Lm,b, P (x,y).

Show that f is surjection.

(2.4) Definition (injection)
A function f is said to be one-to-one, or injective, if and only if f (x) = f (y) implies that x = y

for all x and y in the domain of f . A function is said to be an injection if it is one-to-one.

Remark: A function f is one-to-one if and only if f (x) , f (y) whenever x , y. This way of
expressing that f is one-to-one is obtained by taking the contrapositive of the implication in the
definition. Note that we can express that f is one-to-one using quantifiers as ∀x ∀y
(f (x) = f (y)⇒ x = y) or equivalently ∀x ∀y (x , y⇒ f (x) , f (y)), where the universe of discourse is
the domain of the function.

(2.5) Definition (bijection)
The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

(2.6) Definition (inverse function)
Let f be a bijection from the set A to the set B. The inverse function of f is the function that

assigns to an element b belonging to B the unique element a in A such that f (a) = b. The inverse
function of f is denoted by f −1. Hence, f −1(b) = a when f (a) = b.

8. Let H = {H,LH } denote Poincaré plane, and
let aL denote type I line. Lets define function
g : aL→ R on the following way g(a,y) = ln(y).
Show that g is bijection, and determine
inversion of g.

9. Let p denote line from incidence geometry
{S ,L}, and let f : p→ R denote surjection for
which: |f (P )− f (Q)| = d(P ,Q) ∀P ,Q ∈ p; where d
denote distance function on S . Show that f is
bijection.

(2.7) Definition (sinh(t), cosh(t), tanh(t), sech(t))
We define the hyperbolic sine, hyperbolic cosine, hyperbolic tangent and hyperbolic secant on the

following way
sinh(t) =

et − e−t

2
; cosh(t) =

et + e−t

2
;

tanh(t) =
sinh(t)
cosh(t)

=
et − e−t

et + e−t
; sech(t) =

1
cosh(t)

=
2

et + e−t
.

10. Show that for every value of t ∈ R
(i) [cosh(t)]2 − [sinh(t)]2 = 1; (ii) [tanh(t)]2 + [sech(t)]2 = 1.

11. Let H = {H,LH } denote Poincaré plane, and let cLr denote type II line. Lets define function
g : cLr → R on the following way: f (x,y) = ln(x − c+ r)− ln(y). Show that f is bijection, and
determine inversion of f .
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(2.8) Definition (Euclidean distance dE)
Let P (x1, y1) and Q(x1, y1) denote two points in the Cartesian Plane C = {R2,LE}. The Euclidean

distance dE is given by

dE =
√
(x1 − x2)2 + (y1 − y2)2.

12. Let C = {R2,LE} denote the Cartesian Plane and let P (x1, y1) and Q(x1, y1) denote two

arbitrary points from Cartesian Plane. Show that Euclidean distance dE =
√
(x1 − x2)2 + (y1 − y2)2 is

a distance function.

(2.9) Definition (Poincaré distance dH)
Let P (x1, y1) and Q(x1, y1) denote two points in the Poincaré Plane H = {H,LH }. The Poincaré

distance dH is given by

dH =
{

| ln(y2)− ln(y1)|, if x1 = x2
| ln(x1−c+ry1

)− ln(x2−c+ry2
)|, if P ,Q ∈ cLr

.

13. Let H = {H,LH } denote the Poincaré Plane and let P (x1, y1) and Q(x1, y1) denote two
arbitrary points from Poincaré Plane. Show that Poincaré distance dH is a distance function.

(2.10) Definition (ruler or coordinate system)
Let ` be a line in an incidence geometry {S ,L}. Assume that there is a distance function d on S .

A function f : `→ R is a ruler (or coordinate system) for ` if
(i) f is a bijection;
(ii) for each pair of points P and Q on `

|f (P )− f (Q)| = d(P ,Q). (1)

Equation (1) is called the Ruler Equation and f (P ) is called the coordinate of P with respect to f .

14. Let C = {R2,LE} denote the Cartesian Plane and let d denote the Euclidean distance. Define
function f : L2,3→ R on the following way: f (Q) = f ((x,y)) = x

√
5, ∀Q ∈ L2,3. Show that f is a

ruler for L2,3 and find the coordinate of R(1,5) with respect to f .

15. Let H = {H,LH } denote the Poincaré Plane and let d denote the Poincaré distance. Define
function g : 4L9→ R on the following way: g(P ) = g((x,y)) = ln x+5

y , ∀P ∈ 4L9. Show that g is a

ruler for 4L9 and find the coordinate of M(5,2
√
3) with respect to g.

16. Let C = {R2,LE} denote the Cartesian Plane and let d denote the Taxicab distance. Define
function h : L−2,3→ R on the following way: h(R) = h((x,y)) = 3x, ∀R ∈ L−2,3. Show that h is a ruler
for L−2,3 and find the coordinate of N (1,1) with respect to h.

(2.11) Definition (Ruler Postulate, metric geometry)
An incidence geometry {S ,L} together with a distance function d satisfies the Ruler Postulate if

every line ` ∈ L has a ruler. In this case we say M = {S ,L,d} is a metric geometry.

17. Show that the Cartesian Plane C = {R2,LE} with the Euclidean distance, dE, is a metric
geometry.

(2.12) Definition (Euclidean Plane)
The Euclidean Plane is the model E = {R2,LE ,dE}.

18. Show that the Poincaré Plane H = {H,LH } with the Poincaré distance, dH , is a metric
geometry.
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(2.13) Convention (Poincaré Plane)
From now on, the terminology Poincaré Plane and the symbol H will include the hyperbolic

distance dH :
H = {H,LH ,dH }.

19. Show that the Cartesian Plane C = {R2,LE} with the Taxicab distance, dT , is a metric
geometry.

(2.14) Definition (Taxicab Plane)
The model T = {R2,LE ,dT } will be called the Taxicab Plane.

Lets summarizes the rulers which we have discussed for the three major models of a metric
geometry.

Model Type of line Standard Ruler or
coordinate system for line

Euclidean Plane E La = {(a,y) | y ∈ R} f (a,y) = y
Lm,b = {(x,y) ∈ R2 | y =mx+ b} f (x,y) = x

√
1+m2

Poincaré Plane H aL = {(a,y) ∈H | y > 0} f (a,y) = lny
cLr = {(x,y) ∈H | (x − c)2 + y2 = r2} f (x,y) = ln x−c+r

y

Taxicab Plane T La = {(a,y) | y ∈ R} f (a,y) = y
Lm,b = {(x,y) ∈ R2 | y =mx+ b} f (x,y) = (1 + |m|)x

Convention. In discussions about one of the three models above, the coordinate of a point with
respect to a line ` will always mean the coordinate with respect to the standard ruler for that line
as given in the above table.

In the next section we will discuss some special rulers for a line. These should not be confused
with the standard rulers defined above.

20. In the Euclidean Plane E = {R2,LE ,dE}, (i) find the coordinate of M(2,3) with respect to the
line x = 2; (ii) find the coordinate of M(2,3) with respect to the line y = −4x+11. (Note that your
answers are different.)

21. Find the coordinate of M(2,3) with respect to the line y = −4x+11 for the Taxicab Plane
T = {R2,LE ,dT }. (Compare with Problem 20.)

22. Find the coordinates in H = {H,LH ,dH } of M(2,3) (i) with respect to the line
(x − 1)2 + y2 = 10; (ii) with respect to the line x = 2.

23. Find the Poincaré distance between
i. A(1,2) and B(3,4);
ii. P (2,1) and Q(4,3).

24. Find a point P on the line L2,−3 in the Euclidean Plane whose coordinate is −2.

25. Find a point P on the line L2,−3 in the Taxicab Plane whose coordinate is −2.

26. Find a point P on the line −3L√7 in the Poincaré Plane whose coordinate is in ln2.

27. We shall define a new distance d∗ on R2 by using dE. Specifically:

d∗(P ,Q) =
{
dE(P ,Q), if dE(P ,Q) ≤ 1

1, if dE(P ,Q) > 1
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(i) Prove that d∗ is a distance function. (ii) Find and sketch all points P ∈ R2 such that
d∗((0,0), P ) ≤ 2. (iii) Find all points P ∈ R2 such that d∗((0,0), P ) = 2.

Why do we study metric geometries? It is because many of the concepts in the synthetic
approach which must be added are already present in the metric geometry approach. This happens
because we can transfer questions about a line ` in L, to the real numbers R2 by using a ruler f . In
R we understand concepts like ”between” and so can transfer them back (via f −1) to `. This is the
advantage of the metric approach alluded to in the beginning of the section. After we have more
background, we will return to the question of a synthetic versus metric approach to geometry.

28. Denote by {S ,L,d} a metric geometry, let P ∈ S denote arbitrary point, p ∈ L such that
P ∈ p, and let r ∈ R. Show that on line p there exist at least one point Q such that d(P ,Q) = r.

29. Let {S ,L} be an incidence geometry. Assume that for each line ` ∈ L there exists a bijection
f` : `→ R. Show that then there is a distance d such that {S ,L,d} is a metric geometry and each
f` : `→ R is a ruler.

30. Let d∗ denote distance function on R2 which is defined on the following way

d∗(P ,Q) =
{
dE(P ,Q), if dE(P ,Q) ≤ 1

1, if dE(P ,Q) > 1

Prove that there is no incidence geometry on R2 such that {R2,L,d∗} is a metric geometry. (Thus
not every distance gives a metric geometry.)

31. If {S ,L,d} is a metric geometry and P ∈ S , prove that for any r > 0 there is a point in S at
distance r from P .

32. Define the max distance (or supremum distance), dS , on R2 by

dS(P ,Q) = max{|x1 − x2|, |y1 − y2|}

where P (x1, y1) and Q(x2, y2).
(i) Show that dS is a distance function.
(ii) Show that {R2,L,dS} is a metric geometry.

33. In a metric geometry {S ,L,d} if P ∈ S and r > 0, then the circle with center P and radius r is
C = {Q ∈ S | d(P ,Q) = r}. Draw a picture of the circle of radius 1 and center (0,0) in the R2 for each
of the distances dE, dT , and dS .

34. Let {S ,L,d} be a metric geometry, let P ∈ S , let ` ∈ L with P ∈ `, and let
C = {Q ∈ S | d(P ,Q) = r} be a circle with center P . Prove that `∩C contains exactly two points.

35. Find the circle of radius 1 with center (0, e) in the Poincaré Plane. Hint: As a set this circle
”looks” like an ordinary circle. Carefully show this.

36. We may define a distance function for the Riemann Sphere as follows. On a great circle C we
measure the distance dR(A,B) between two points A and B as the shorter of the lengths of the two
arcs of C joining A to B. (Note dR(A,−A) = π.) Prove that dR is a distance function. Is {S2,LR,dR}
a metric geometry?

Solutions: 1. [dM is dist fun] 2. [dmax is dist fun] 3. [d is dist. fun.] 7. [P ( t√
1+m2

, mt√
1+m2

+ b), P ∈ Lm,b,
f (P ) = t] 8. [g−1(t) = (a,et)] 9. [f (P ) = f (Q)⇒ P =Q] 11. [ln(x − c+ r)− ln(y) = t, et = x−c+r

y , e−t = −x−c−ry ,

y = rsech(t), x − c = r tanh(t)]
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